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A B S T R A C T

Invasive macrophytes, such as non-native Hydrilla verticillata, negatively affect lentic systems of the Southeastern
United States by impeding recreational activities and power generation as well as disrupting intrinsic ecological
function. Expenditures associated with aquatic weed management include costs accompanied with monitoring,
mapping, and implementing control measures. Traditional biomass sampling techniques have been widely uti-
lized to assess the extent and abundance of submersed aquatic vegetation (SAV) incursions, but often require
significant labor inputs which limits repeatability, the scale of sampling, and the rapidness of processing.
Advances in consumer available hydroacoustic technology and data post-processing platforms offer the oppor-
tunity to estimate SAV biomass at scale with reduced labor and economic requirements. Research was conducted
at two North Carolina reservoirs to compare acoustically derived cloud-based biovolume estimations from an
over-the-counter echosounder, to in situ hydrilla biomass measurements. Temporal patterns, spatial develop-
ments, and hydrilla biomass prediction models are presented. Biomass and biovolume measurements were po-
sitively correlated at both the Shearon Harris and Roanoke Rapids study locations. The most robust predictive
equation employed generalized additive models (GAMs) from the Shearon Harris dataset which, described en-
vironmental parameters with the lowest error and greatest agreement compared to other verified models. Each
biovolume to biomass relationship supported the initial hypothesis that as biovolume increases, SAV biomass
increases in a positive, non-linear trend. Implications from this study may prove useful for comparing seasonal
growth patterns, littoral occupancy, and herbicide treatment effects on a spatiotemporal level.

1. Introduction

Submersed aquatic vegetation (SAV) plays a vital role in con-
tributing to whole-lake ecological assemblages by providing macro-
invertebrate habitat (Strayer and Malcom, 2007), physical structure
and food for shoreline fish species (Petr, 2000), and essential abiotic
dynamics (Madsen et al., 2001). However, some freshwater macro-
phytes like the exotic species, Hydrilla verticillata (L.F.) Royle, present
negative impacts through competition and displacement of native SAV
(Van Dyke et al., 1984; Spencer and Ksander, 2000; Meadows and
Richardson, 2012), and the impediment of recreational activities and
power generation (Langeland, 1996). Not only can invasive macro-
phytes create ecologic disturbance but also economic hindrance for
stakeholders. In the United States, over $100million is spent annually
towards the management of aquatic plants (Rockwell, 2003), thus sig-
nifying the importance of monitoring infested areas and timely man-
agement application.

One measure of determining the severity of an exotic macrophyte

invasion is through in situ biomass sampling over time (Madsen, 1993).
Using this process, aquatic plant managers also have an opportunity to
identify community taxa, estimate plant abundance (Moore et al.,
2000) and calculate stocking rates for grass carp (Ctenopharyngodon
idella) (Van Dyke et al., 1984; Bonar et al., 1993). Conversely, there are
several drawbacks to this method for accessing SAV. Destructive bio-
mass sampling is an extremely laborious process (Madsen, 1999) and it
can be restrictive to evaluate expansion over large spatial scales (Duarte
and Kalff, 1990; Johnson and Newman, 2011). Also, spatial and tem-
poral development of littoral plant beds may be difficult to appraise
from biomass point sampling alone. However, advances in hydro-
acoustic technology and geographic information systems (GIS) over the
last several decades offer an opportunity to estimate SAV biomass at
gamut with reduced labor and economic requirements.

Numerous studies have revealed valuable implications of utilizing
hydroacoustic technology for macrophyte estimation (Maceina et al.,
1984; Duarte, 1987; Thomas et al., 1990; Sabol and Melton, 1996;
Valley and Drake, 2005). Maceina and Shireman (1980) were the first
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investigators to recognize and document the performance of a recording
fathometer (echosounder measuring depth in fathoms) to predict hy-
drilla biomass, although the accuracy of their regression equation was
confounded by ecological growth patterns. To account for plant struc-
ture and littoral growth arrangement, Duarte (1987) successfully stu-
died the form of macrophyte growth to create a comprehensive pre-
dictive model of submersed biomass. However, there were some
limitations with this model as the echosounding transducer used was
not capable of acquiring SAV less than 20 cm in height and the study
site was comprised from a community of mixed species (Duarte, 1987).
To overcome the structurally derived component in biomass prediction
from an echosounder, Thomas et al. (1990) used biovolume, or the
quantity of the water-column occupied by SAV, to indicate spatial
abundance instead of complex models of plant height and form. Using
biovolume as a predictor of plant structure was found to represent
ecological growth habits more precise than plant bed height to quantify
littoral zone development (Thomas et al., 1990). Although these re-
searchers pioneered the use of hydroacoustic technology for predicting
SAV biomass from acoustically derived signatures, there are several
disadvantages from each sampling approach. Protocols commissioned
by the previously described studies employed the use of scientific grade
echosounders with narrow transducer beam angles (e.g. 6° to 15° beam
angle) to achieve maximum SAV penetration to the benthic surface for
clearer bottom detection (Maceina and Shireman, 1980; Thomas et al.,
1990) and commercially available echosounding devices (e.g. 22° to 50°
beam angle) to obtain a breadth of SAV profiles (Duarte, 1987; Thomas
et al., 1990). Implementation of transducer beam angle extremes (e.g.
6° or 50° beam angle) limits the scope of spatially available information,
inhibits the detection of short vegetation, and increases plant bed sa-
turation loss.

Another concern is the use of mixed plant stands for the basis of
regression analysis and biomass predictive models. Although Maceina
and Shireman (1980) comprised their report around hydrilla, sub-
sequent studies used a community of macrophytes to develop complex
regressions between observed biomass to acoustically derived biomass
projections. Therefore, a monospecific based equation should more
accurately represent true biomass abundance and progression since not
all SAV have the same structure to biomass ratio (Jørgensen, 2013).

Current hydroacoustic equipment and procedures are more effective
than those units used to study biomass and echosounder tracings near
three decades ago. Recent advances in consumer grade echosounders
solve several constraints previously described, and advancements in GIS
technology enable timely post-processing of survey data (Sabol et al.,
2002). Modern echosounder units not only present a broader acoustic
range, but also provide a cost-effective option for contiguous repeat-
ability throughout the monitoring period (Valley et al., 2005).

The objectives of this research were to document the use of a
commercially available echosounder to: 1) delineate and characterize a
relationship between hydroacoustic biovolume signature to in situ
measured hydrilla biomass; and 2) develop an algorithm for the as-
sessment of hydrilla biomass from interpolated hydroacoustic biovo-
lume records. From these objectives, the expected outcome is to de-
scribe a protocol for passive data acquisition while reducing the
economic inputs associated with labor efforts involved in biomass col-
lection and post-processing evaluation. In our research, a commercially
available echosounding unit was utilized to correlate biomass from
monospecific stands of hydrilla within two different North Carolina
piedmont reservoirs using a third-party, cloud-based algorithm to aid in
post-processing. We hypothesize that as hydrilla biovolume increases,
biomass will increase proportionally with depth.

2. Materials and methods

Between mid-June and late-October 2015, two NC piedmont re-
servoirs were sampled fortnightly for hydrilla biomass and acoustically-
derived SAV abundance. Timing of the boat-based sampling procedures

conformed to measurements of hydrilla growth patterns from a pre-
vious report conducted on NC lakes (Harlan et al., 1985). The two NC
piedmont water bodies chosen for fixed sampling sites included
Shearon Harris Reservoir (SH; Wake Co.; 35°38′0″N, 78°57′18″W) and
Roanoke Rapids Lake (RR; Halifax Co.; 36°28′58.3″N, 77°43′38.7″W).
These locations were selected to simulate a range of ecological factors
of bathymetric profile, littoral slope, water exchange frequency, and
seasonal SAV growth rates. Based on previously conducted surveys,
hydrilla has been the dominant macrophyte in both reservoirs for over a
decade (Nawrocki et al., 2016; NCDWQ, 2006), thus providing an op-
timal scenario for testing monospecific biomass correlation.

2.1. Biomass sampling

Predetermined hydrilla plots were georeferenced at both study lo-
cations prior to biomass sampling. Individual rectangular plots con-
tained 60 sequentially numbered points (labeled 1–60), comprising a
surface area of 6300m2 (50m×126m) each. RR contained three plots
while SH contained two plots. Points were loaded to the boat-based
echosounding unit preceding the experimental period to reference
biomass sampling positions.

SAV biomass was collected every two weeks at both study locations
to ensure adequate temporal resolution within the sampling period for
describing seasonal growth trends (Madsen, 1993). For each of the
sampling periods, four randomly selected points were selected from
n=60 points per plot using a random number generator without re-
placement (R Core Team, 2015). These sample points were then used
for all plots at both lake locations for that sampling period (i.e. SH=8
points biweekly; RR=12 points biweekly).

To sample SAV biomass at each of the study sites, a modified version
of the boat-based vertical rake method, proposed by Johnson and
Newman (2011) for macrophyte biomass collection, was utilized. The
sampling rake used in this study contained eight sampling tines cov-
ering a volumetric representation of 0.25m−3, affixed to a 2.5m pole.
If depth of a given collection point was greater than 2.5m, a 3m pole
extension was added. To collect biomass within a test plot, the onboard
global positioning system (GPS) from the echosounding unit was used
to loiter the boat over designated random points. To increase true
spatial proximity, the rake was lowered near the boat-based transducer
into the water column and through the plant bed until lake bottom was
reached. The rake was spun two full-rotations before slowly returning
the rake back to the boat for analysis of above-benthic plant material.
At the time of rake retrieval, in situ estimates of rake coverage and
average stem length were recorded (e.g. one rake tine with macrophyte
material= 12.5% coverage, two tines= 25% coverage, etc.). If any
other SAV species were detected within hydrilla biomass samples
(< 5% occurrence of non-hydrilla), those macrophytes were separately
bagged and analyzed. All representative hydrilla biomass collected
were field washed of any detritus, individually bagged for dry weight
analysis, and placed in a cooler until reaching the lab.

At the lab, samples were allowed to air dry on expanded metal ta-
bles for at least 24 h prior to oven drying to reduce dehydrating time
and potential decay of wet plant material. Samples were then dried at
60 °C for 48 h before biomass weights were recorded in dry biomass per
unit rake volume (g dm 0.25m−3).

2.2. Hydroacoustic sampling

A Lowrance HDS-7 Gen21 commercial grade fish-finding echo-
sounder, with internal GPS capability of 5-Hz refresh rate and an ac-
companied 200-kHz single frequency transducer with 20° beam angle at
10–15 pings s−1, were used to log acoustically derived SAV signatures
and corresponding spatial location.

Prior to biomass sampling, a hydroacoustic scan occurred at each
discrete plot, on each sampling date. Starting at the beginning of each
plot, a serpentine transect with 7.5m spacing occurred throughout the
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remaining length of the plot at a boat speed of ˜8 km h−1 to determine
bottom area interpolation of SAV abundance at each labeled biomass
sampling point. The. sl2 sonar log representing a particular site location
was given a unique identifier so future correlation could be prepared.
All logged data were saved by the chartplotter to an internal 32GB SD
memory card for further analysis and upload to ciBioBase 5.2 cloud-
based software2.

2.3. Data analysis

All hydroacoustic data uploaded to the ciBioBase 5.2 algorithm
were exported as tabular ASCII-grid records of spatial location, biovo-
lume percentage, and depth contour. Using similar methods to Valley
et al. (2015), representative plots at all sites were imported into ESRI
ArcGIS 10.2.23 software for further post-processing and analysis. Bio-
volume grid-point features were transformed to shapefiles where the
ArcGIS spatial analyst, feature-to-raster tool, was used to interpolate
raster grids with 7.5m−2 cell size. The resulting raster grids made it
permissible to perform bilinear extractions of biovolume percentages to
buffered hydrilla biomass point feature data collected throughout the
sampling period. Using Hijmans (2015) RStudio4 raster package, a
2.5 m buffer was placed around each corresponding biomass point
feature of interest. This buffer distance represented in situ spatial errors
such as wind drift and GPS resolution while collecting biomass samples.
The joined hydroacoustic and buffered biomass dataset attributes were
then used to run correlation analysis and provide visual representation
in RStudio nonparametric and ggplot2 packages (Hayfield and Racine,
2008; Wickham, 2009). Digests such as percent area covered (PAC),
bathymetry, and seasonal biovolume development among plots at both
SH and RR could also be statistically associated using ArcGIS and
RStudio platforms. A false-positive limiting depth of 0.76m was as-
signed as the minimum depth used for correlation analysis due to heavy
noise and backscatter from the transducer in shallow areas (Duarte,
1987; Valley et al., 2015). Removing data points from the shallow re-
gions in this study did not impede overall analysis as plot layouts for
biomass harvesting were designed to exceed 0.76m depths. Regression
analysis and biomass prediction algorithms utilized RStudio base and
non-parametric generalized additive models {mgcv} packages (Wood,
2011; R Core Team, 2015).

3. Results and discussion

3.1. Study sites and plot characteristics

Biomass was collected throughout the experimental period to re-
present a wide range of littoral features and seasonal variability among
each test plot (Table 1). The mean seasonal biovolume percentages and
biomass accumulation varied less at RR than at the SH test sites
(Table 1). However, both locations had similar depth variability be-
tween individual test plots (Table 1).

Hydrilla was the only macrophyte found at SH, however,
Ceratophyllum demersum L. (coontail), Cabomba caroliniana A. Gray
(cabomba), and Myriophyllum spicatum (Eurasian watermilfoil) were
found in 13 out of 71 samples at RR. Each of the three plots at RR had at
least one non-hydrilla species sampled during this experiment, with
plot number two containing the greatest number of non-hydrilla bio-
mass samples. Samples which comprised>5% of non-hydrilla biomass
were identified and tested in two separate correlation analyses at RR.

3.2. Correlation of biovolume, biomass, depth and rake fullness estimations

Non-linear regression analysis was used to explain non-parametric
correlations among estimated biovolume percentages and observed
hydrilla biomass (Fig. 1). SH had a lower agreement (Spearman rank
‘rho’= 0.51, P < 0.001). However, there was a strong positive trend
that indicated biomass would increase with biovolume (Fig. 1a).

Hydrilla growth at both SH test plots contained low biovolume to
biomass ratios, which may explain why there was a low association
when biovolume reached ≥ 25% (Fig. 1a). Two correlations were
comprised for RR, one with hydrilla only (Spearman rank ‘rho’= 0.73,
P < 0.001), and another with hydrilla in addition to non-hydrilla
(Spearman rank ‘rho’= 0.69, P < 0.001) (Fig. 1b). Both correlations
from RR produced strong agreement and represented high biovolume to
biomass ratios well; conversely, low biovolume estimates (i.e.≤ 25%)
were not well represented. While independent correlations from SH and
RR study areas indicated positive correlations with significance, the
pooled data provided the greatest explanation of association (Spearman
rank ‘rho’= 0.79, P < 0.001) (Fig. 1c). The combination of both lake
data sets characterized a wide range of biovolume (0 to 100%), depth (0
to 4.74m), and biomass (0 to 446.1 g dm), that provided well spread
data and the most accurate representation of seasonal hydrilla growth.
Thus, the entire range of biovolume estimates were well represented at
both lake locations (Fig. 1c). Among every correlation, hydrilla biomass
was often found at maximum in shallow depth localities. Overall, each
biovolume to biomass relationship supports the initial hypothesis that
as biovolume increases, SAV biomass should increase in a positive
trend, although alterable, since bathymetry aids in delineating biovo-
lume estimations.

With both data sets pooled, hydrilla biomass was negatively corre-
lated to bathymetric characteristics from both study sites (Spearman
rank ‘rho’ = -0.59, P < 0.001). Depth profiles of SAV had a slightly
right-skewed, semi-parabolic form (Fig. 2). Average depth occurred at
x̄ =2.13 ± 0.79 m, with biomass decreasing to either side of the
maximum observed biomass value. A comparable depth to biomass
correlation has also been documented by Duarte and Kalff (1990).
Shallow depths limit the vertical expansion of SAV, while deeper depths
do not provide as much light attenuation, due to suspended solids, to
maximize SAV growth potential (Havens, 2003). This supports our
ecological trend hypothesis that the majority of high biomass and
biovolume was arranged within one standard deviation of the mean
depth zone.

Accessing trends in biovolume distribution against known depth
profiles identified non-linear relationships among all observed datasets
(Fig. 3). Biovolume was influenced by depth range at both independent
study sites when comparing repeated measurements of the mean bio-
volume percentages using Wilcoxon signed rank test (SH: W=48,
P < 0.001; RR: W=26, P < 0.001) and also when both site datasets
were combined and matched using Kruskal-Wallis rank sum test (
2= 83.91, P < 0.001) to access site specific biovolume differences.
From these observations, it should be noted that SH had low biovolume
percentages at all depth bins while RR best fit the high range of bio-
volume percentages from 1.5 to 3.0m (Fig. 3). Therefore, the pooled

Table 1
Biomass and hydroacoustic sampling dynamics at each study location from 6/
11/15 to 10/13/15.

Biomass
Samples

Depth (m) Seasonal
Biovolume (%)

Observed Biomass
(g dm 0.25m−3)

Lake N Range Mean C.V. Mean C.V. Mean C.V.

Shearon Harris
Plot 1 44 0.74 –

3.29
1.91 37.45 17.84 174.56 29.31 182.66

Plot 2 40 1.25 –
4.74

2.54 34.34 4.12 286.20 2.44 332.11

Roanoke Rapids
Plot 1 19 1.11 –

2.43
1.56 22.75 79.64 30.97 40.29 121.03

Plot 2 20 1.32 –
2.96

1.92 28.06 74.53 37.45 72.50 98.43

Plot 3 19 0.88 –
2.62

1.61 39.15 64.80 47.03 52.73 135.85
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data biovolume best represents depth bins for which water columns
were fully comprised of SAV (i.e. 100% biovolume). Generally, biovo-
lume percentages rarely exceeded 15% at depths ≥ 3.0m. Valley et al.
(2005) noticed an analogous trend shape in their study of depth to
biovolume percentages, thus emphasizing the extent of SAV depth
profiles in our experiment.

Employing non-linear modeling on rake fullness estimates, a high
correlation was discovered between rake coverage and hydrilla biomass
(Spearman rank ‘rho’= 0.89). This finding is thought to be due to
sampling points comprised of dense vegetation and low SAV height, or
sparse vegetation with SAV capable of covering all rake tines. in situ
plant height estimates were also found to be highly correlated to

Fig. 1. a) Shearon Harris correlations among estimated
biovolume percentages from ciBiobase 5.2 and observed
hydrilla biomass (Spearman rank ‘rho’= 0.51,
P < 0.001). b) Roanoke Rapids correlations among esti-
mated biovolume percentages from ciBiobase 5.2 and ob-
served hydrilla biomass (Spearman rank ‘rho’= 0.73,
P < 0.001). c) Pooled dataset correlations among esti-
mated biovolume percentages from ciBiobase 5.2 and ob-
served SAV biomass by sampling locations (Spearman rank
‘rho’= 0.79, P < 0.001). From these observations,
Shearon Harris best represents data points of low biovo-
lume and low biomass where Roanoke Rapids more clearly
depicts samples containing high biovolume and high bio-
mass.
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collected biomass (Spearman rank ‘rho’= 0.89), which advocates that
an increase in plant height may lead to an increase in SAV biomass even
in less dense stands.

3.3. Hydroacoustic biomass prediction algorithms

Multiple linear regression (MLR) and non-parametric, generalized
additive models (GAM), were utilized to provide prediction equations
for SH, RR, and a pooled dataset of both test sites (Tables 2 and 3).
Among lake locations, the SH MLR model (Table 2a) had the greatest
projected coefficient of determination (R2adj = 0.71, P < 0.001) and

the deepest littoral profile. Since depth is shown to limit the extent of
vertical hydrilla growth in this study, SH thus received the highest
maximum biomass estimate. Similar findings were obtained when em-
ploying GAMs, as the SH dataset provided the highest coefficient of
determination (R2 adj = 0.86, P < 0.001) and the lowest RMSE
(129.72) among lake locations (Table 3). MLR biomass prediction for
RR (Table 2b) showed lower agreement (R2 adj = 0.34, P < 0.001)
than SH, and GAM equations for RR had the poorest agreement (R2

adj = 0.36, P < 0.001) and goodness-of-fit (Table 3). The GAM for the
pooled data delivered improved model outcomes when compared to the
RR dataset when cross-validated (Table 3), but pooling the data did not

Fig. 2. Depth profiles of SAV shown have a slightly right-skewed, semi-parabolic profile. Depth average occurred at x̄ =2.13 ± 0. 79 m, with biomass decreasing to
either side of the maximum observed biomass value (446.10 g dm 0.25m−3).

Fig. 3. Box-whisker plots of estimated biovolume detected at corresponding sampling locations at Shearon Harris, Roanoke Rapids, and a pooled dataset of both
locations. Each plot depicts summary statistics of the median, the lower and upper quartiles, and the minimum and maximum biovolume values for each corre-
sponding depth bin.
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provide the best explanation of biomass prediction overall. Therefore,
the best-fit model identified from this study utilized GAMs from the SH
dataset (Dry Biomass= s1(SH Biovolume) + s2(SH Depth) + ti(SH Bio-
volume, SH Depth) (Fig. 4; Table 3).

One ecological factor which occurred among the SH algorithms was
the lack of data values representing high biomass and biovolume.
However, the inverse relationship occurred among RR, where the low
range of biomass and biovolume were not well represented. These
confines were most apparent among data points containing low biomass
and high biovolume. However, these issues were overcome when ap-
plying depth as a factor which homogenized the data into units of the
water column occupied with SAV at given depth gradients.

From our prediction equations, many of the restraints described
from previous reports have been satisfied. Following suggestions pro-
vided by Thomas et al. (1990), our algorithms utilized biovolume as the
primary predictor of future biomass estimates to standardize plant
height and water depth variations. Doing this defined hydrilla density
among varying depths and characterized much of the ecological growth
limitations documented by Maceina and Shireman (1980. Furthermore,
removing any significant (P > 0.05) non-hydrilla biomass from the
prediction models increased the accuracy of hydrilla prediction, as
biomass calculations involving mixed-stands of SAV are prone to pre-
eminent biomass inconsistency (Duarte, 1987).

3.4. Conclusions and management implications

Our findings are consistent with those of Stent and Hanley (1985);
Duarte and Kalff (1986), and Duarte and Kalff (1990), that biomass
regression analysis is a site-specific procedure due to littoral slope,
turbidity, water quality, and the presence of other macrophytes. We
have also shown, that even when using monospecific stands of hydrilla,
there is variation of SAV biomass among discrete waterbodies. How-
ever, using GAMs to engage vigorous statistical procedures, the power
of obtaining a more precise prediction model has potential for ex-
plaining environmental factors causing deviation.

A few minor limitations involving the prediction of future hydrilla
biomass were apparent in this study. These disadvantages were: 1)
hydrilla biomass was highly variable as biovolume reached 100% water
column occupancy; 2) once biovolume reached 100%, we were unable
to predict future responses in our algorithms; 3) in areas where SAV
height was at the water surface, our boat was incapable of mapping
those areas reliably without obstructing boat transects; and 4) we were
not able to obtain biovolume estimates below 0.76m due to transducer
noise. On a cautionary note, all biomass estimations occurring when
biovolume is at 100% should be double checked with depth parameters
to ensure model elements are not extrapolated beyond the extent of the
dataset. Also, to overcome unrepresented areas containing SAV at ei-
ther depths< 0.76m or areas containing 100% biovolume, spatial in-

Table 2
Multiple linear regression equations comprised from either both study locations or the pooled dataset.

Lake Mean Depth (m) Regression Equations DF Prob > F R2 adj Maximum Biomass Estimate (g)a

(a) Shearon Harris 2.22 DRY BIOMASS=13.37+ 119.93 (BIOVOLUME) - 5.16 (DEPTH) 81 0.001 0.71 129.5
(b) Roanoke Rapids 1.69 DRY BIOMASS = - 22.67+ 140.46 (BIOVOLUME) - 14.50 (DEPTH) 55 0.001 0.34 98.66
(a+ b) Interaction 1.91 DRY BIOMASS=10.802+88.662 (BIOVOLUME) - 5.622 (DEPTH) 139 0.001 0.47 95.33

a The highest biomass prediction at depth threshold of 0.76m with a spatial representation of 0.25m−3 using site specific training data.

Table 3
Generalized additive model (GAM) equations comprised from either both study locations or the pooled dataset.

Lake Mean Depth
(m)

Regression Equations R2 adj Deviance
Explained

RMSE Maximum Biomass
Estimate (g)a

(a) Shearon
Harris (SH)

2.22 SH DRY BIOMASS= s1(SH BIOVOLUME) + s2(SH DEPTH) + ti(SH
BIOVOLUME, SH DEPTH)

0.86 88.1% 129.72 185.0

(b) Roanoke Rapids
(RR)

1.69 RR DRY BIOMASS= s1(RR BIOVOLUME) + s2(RR DEPTH) + ti(RR
BIOVOLUME, RR DEPTH

0.36 42.7% 372.74 106.9

(a+ b) POOLED 1.91 POOLED DRY BIOMASS= s1(POOLED BIOVOLUME) + s2(POOLED
DEPTH) + ti(POOLED BIOVOLUME, POOLED DEPTH)

0.53 55.0% 442.63 111.8

a The highest biomass prediction at depth threshold of 0.76m with a spatial representation of 0.25m−3 using site specific training data.

Fig. 4. Three-dimensional, perspective plots used to represent site specific biomass (Z-axis) prediction values from respective generalized additive models (GAMs).
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terpolation techniques such as kriging, IDW, bilinear interpolation, or
nearest neighbor may be utilized to define those regions (Valley et al.,
2005).

Although some drawbacks were present with this research, the ad-
vantages of utilizing a commercially available echosounding unit for
macrophyte biomass assessment are greater than the obstacles formerly
described. By utilizing a third-party vendor for echosounder data
management, a major reduction in post-processing time was achieved.
Furthermore, our methodology proved useful in both tracking and
mapping temporal changes in biovolume and biomass accumulation
over time. This not only offered a repeatable, non-destructive mon-
itoring opportunity for ecological growth patterns, but also provided
visual evidence for aquatic weed management applications. Aquatic
plant managers may additionally want to employ the use of the algo-
rithms previously designated in formulating recommendations for
herbicide treatments, grass carp stockings, or stakeholder reports. Since
this study focused solely on hydrilla, future studies may want to vali-
date these models in similarly structured macrophytes for biomass es-
timation (e.g. submersed Myriophyllum spp.).

In summary, our study defines the parallel between biovolume and
hydrilla biomass thus stipulating technological advances used by
aquatic ecologists conducting fixed point-intercept sampling protocols,
while also passively recording hydrilla biomass estimation using an
over-the-counter consumer echosounder.

Sources of materials

1 Lowrance HDS-7 Gen2 chartplotter, Navico Inc., 4500 South 129th
East Avenue, Suite 200, Tulsa, OK 74134.

2 ciBioBase 5.2 cloud-based software, Contour Innovations, LLC,
1229 Tyler Street NE, Suite 120, Minneapolis, MN 55413.

3 ArcGIS 10.2.2, Environmental Systems Research Institute, 380
New York Street, Redlands, CA 92373.

4 RStudio 3.1.3, The R Foundation for Statistical Computing, 250
Northern Ave, Boston, MA 02210.
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