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ABSTRACT 

With the advent of sUAS, research scientists and plant managers are capable of obtaining unique, fast, and low-cost 

quantitative data, which delivers many repeatable survey options. Benefits of autonomous sUAS platforms include 

minimal training, reduced human safety concerns, and creation of graphic outputs which may be readily viewed by any 

stakeholder who was not actively involved in the survey or management activity. Research conducted in the Wellington 

Region, New Zealand was used to evaluate consumer-grade sUAS technologies to map and estimate standing biomass of 

Manchurian Wild Rice (MWR), an exotic semi-aquatic grass which promotes flooding, and displacement of native flora 

and fauna. The goal of this research was to improve the speed and resolution of current survey strategies used to assess 

MWR among a lowland pasture site using unmanned systems and photogrammetry techniques. Image collection and data 

processing was conducted in a manner to provide a theoretic biomass estimation of remaining MWR following seasonal 

growth and herbicide applications. Post-processing methods and theories discussed attempt to identify and quantify 

MWR biomass using supervised imaging analysis, plant height modeling, and biomass collected in situ. The use of 

unmanned systems to map, monitor, and manage MWR is encouraged for future applications.  
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1.INTRODUCTION 

Aquatic invasive species (AIS), such as Zizania latifolia (MWR; Manchurian Wild Rice), often have undesirable effects 

on native aquatic ecology and the associated local expenditures within invaded regions (Arnold 1959; Hofstra and 

Champion 2007; Santos et al. 2011; Gallardo et al. 2016). Generally, AIS like MWR reduce aquatic ecosystem 

biodiversity through resource competition (Madsen and Sand-Jensen 1991), dominance and displacement (Houlahan and 

Findlay 2004), and habitat disruption (Thum and Lennon 2009; Schultz and Dibble 2012). Specifically, the growth habits 

of MWR form impenetrable canopies that create waterlogged pasturelands and hazards to livestock (Figure 1). Although 

AIS threaten ecosystem processes (Wilcove et al. 1998), the expenditures associated with AIS are equally noteworthy as 

tall, perennial grass species like MWR commonly impede navigation, and obstruct canals and water intakes.  To reduce 

the negative ecological and economic impacts associated with AIS like MWR, managers employ various schemes to 

protect and preserve native aquatic systems (cultural, mechanical, chemical, and monitoring tactics). One of the most 

effective methods to mitigate the spread of exotic plants is through early detection and rapid response measures 

(Westbrooks 2004) and regions which receive early detection minimize the financial and environmental costs associated 

with invasions (Rejmànek and Pitcairn 2002; Hestir et al. 2008; Thum and Lennon 2009; Lambert et al. 2010). However, 

when AIS incursions persist, such as the case with MWR in the Wellington Region, New Zealand, aquatic resource 

managers must integrate AIS surveillance and delimitation methods with subsequent control methods and monitoring.    

It is well accepted that timely monitoring and mapping techniques are essential for evaluating native and exotic aquatic 

vegetation (Maceina et al. 1984; Hestir et al. 2008; Santos et al. 2011; Husson et al. 2016). Though many surveying 

techniques are well-established (Ackleson and Klemas 1987; Schneider et al. 2004; Gunn et al. 2010), in situ point-

intercept sampling and ‘search radius’ protocols remain an industry standard for describing spatiotemporal trends in AIS 

presence, abundance, distribution, and richness.  However, there are several hindrances with both methodologies, as 

assessments require a skilled workforce (correct species identification) and there is often subjectivity among surveyors, 

which can lower survey accuracy and efficiency. Likewise, these methods require considerable labor and time inputs, as 

the extent of waterway evaluations are highly correlated with the precision, spatial coverage, and time-length spent 

evaluating each sampling location. Therefore, researchers and plant managers seek to utilize recent advances in remote 
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imaging and photogrammetric technologies, specifically small unmanned vehicles (sUAS), to minimize the expenditures 

associated with localized AIS surveys.  

For the past several decades, optical sensors (Ackleson and Klemas 1987; Sawaya et al. 2003; Nelson et al. 2006; Hestir 

et al. 2008) have aided in aquatic plant survey methods. Coupling remotely sensed data with computer-based programs, 

such as geographic information system (GIS) (eg. ArcGIS; GRASS GIS; ENVI; RStudio), has further increased the 

performance of mapping techniques (Lehmann and Lachavanne 1997; Shaw 2005; Santos et al. 2016, Petrasova et al. 

2017). Measurements of submersed and emergent vegetation have been successfully performed using true-color and 

multispectral imagery (Ackleson and Klemas 1987; Peñuelas et al. 1997; Belliss and Pairman 2009; Martin et al. 2010). 

However, the cost of repeated applications over large spatial scales often limits the use of many of the purchased satellite 

flights or airborne sensors. Multispectral open-source sensors, such as Sentinel-2 and Landsat 7 TM/ETM+, do provide 

the basic spectral ranges needed for accessing broad population estimates, but lack the spatial and temporal resolution 

(e.g. pixel size of 10-30 m2 and ~5-15 days; respectively) to represent localized vegetation or differentiate amongst 

similar species. Most of the compact cameras used on sUAS provide superior spatial resolution and temporal 

determination (e.g. pixel size of 1–3 cm2 and minutes-to-hours), with a fraction of the economic input of a single 

multispectral image from a commercial airborne or satellite sensor (Baluja et al. 2012; Turner et al. 2012; Candiago et al. 

2015). Nevertheless, there are limitations with true-color and multispectral platforms for acquisition of aquatic 

vegetation. Plant physiological and environmental factors (e.g. turbidity, sun angle geometry, weather) can create 

complications when evaluating some aquatic plants, especially when observing canopies partially submersed in the water 

column. Still, implementing a sUAS could address the above limitations, while providing superior spatial resolution (<1-

5 cm2) with a user defined temporal resolution.   

The objective of this research was to serve as a pilot program to provide a timely and systematic appraisal of MWR 

growth, objective population dynamics, and delineate post-treatment herbicide effects of the invasive semi-aquatic plant 

species located in the Wellington Region, New Zealand. Specifically, this study describes capturing aerial images of 

MWR at varying altitudes to develop maps and estimates of plant biomass using image classifications and in situ 

collected plant metrics. A protocol for comparing in situ collected biomass to plant height models derived from sUAS 

are described to combat the aforementioned surveying limitations. Findings from this study will be useful in supporting 

survey options and management tools, which would remove the subjectivity of biomass estimations in the field, while 

providing quantitative evidence of MWR stands to stakeholders. 

  

2.MATERIALS AND METHODS 

2.1 Test Site: Wetland and low-lying pastureland (Wellington Region, North Island, New Zealand).  

The study site was located near Waikanae Beach park (40°52′30″S 175°03′50″E, altitude 2-5 m AMSL), 60 km north of 

Wellington City (Figure 2). This invaded area has been under MWR management regimes for the past 15 years. 

Herbicide application via helicopter or backpack sprayers occurs annually, and occasionally twice-annually, depending 

on the funding year with monitoring efforts following each successive management application period. Two locations 

(location 1:14 ha plot and location 2: 5 ha plot; respectively) were flown at altitudes of 30, 61, and 120 m to identify the 

appropriate altitude needed to assess MWR stands. Destructive biomass sampling occurred among the first study 

location, where standing biomass was harvested from three MWR density scales using 0.25 m2 quadrats: (N=9; 3 

replications: Density 1 [0-1 m], Density 2 [1-2 m], Density 3 [>2 m]). Biomass collections represented the minimum and 

maximum growth structures of the invaded site. Ground control points (GCPs) were distributed randomly across both 

study locations (Table 1; Figure 3). The GCPs were represented using latex party balloons inflated to a diameter of 18 

cm and attached to emergent vegetation or fencing using monofilament fishing line (Figures 3,4). Each GCP position 

was measured using a handheld global positioning system (GPS, Garmin Rino 650, Australia/New Zealand) with 3 m 

horizontal and vertical position accuracy.   

2.2 Biomass sampling.  
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Destructive aboveground biomass sampling ensued separately amongst the sampling sites within the first study area 

(Table 2). Aboveground tissue (above soil or waterline) samples were cleaned of other plant materials and detritus. 

Harvested leaves representing each density level were bundled using bailers twin and measured for average leaf length 

prior to drying. To obtain above-ground dry biomass, each of the samples were dried to a constant dry-mass at 30 °C for 

2 weeks, and each plant bundle weighed separately.   

2.3 sUAS platform.  

In this study, a DJI Phantom 4 Advanced quadcopter was used to capture aerial photography of the study sites. The flight 

duration varied between 3–24 minutes based upon the altitude and flight plan. Due to battery and environmental 

conditions, flights were conducted over two days between the hours of 10:00 and 14:00 (18 April and 19 April). Pix4D 

Mapper and DroneDeploy tablet applications were used to develop and conduct each flight plan. Contingent on the flight 

application used, the DJI provided gimbal mounted RGB optical sensor (20 MP; FOV 84° 8.8 mm) maintained near-

nadir and slightly oblique camera positions throughout the duration of each fight mission. During each flight, 

environmental conditions and sUAS locations were manually monitored and recorded. Captured imagery and associated 

metadata was automatically logged to an onboard 32 GB SD memory card.   

2.4 Image pre- and post-processing.  

To produce an orthomosaic image and digital surface model (DSM) from each flight plan, Agisoft PhotoScan Pro 

photogrammetric structure from motion (SfM) software was utilized. The first process in creating a projected DSM and 

orthomosaic was to align the photos then assign GCPs to the imagery workspace. To successfully reference each GCP, at 

least three images containing each unique GCP was required. To help optimize the alignment process, GCPs were 

filtered by photo markers to use GCP .txt file coordinates for spatial error reduction. Prior to building dense clouds, the 

boundary box containing each region of interest was resized to encompass only the minimal extent of the model elements 

to reduce processing time and increase efficiency. For point cloud (Figure 5), mesh, and texture construction, a medium 

resolution batch process was used. Parameters for DSM and orthophoto creation were obtained from batch processing 

results. Data exports (.tiff) for further processing and reports (.pdf) were exported for further spatial error analysis.  

Additional GIS processing occurred using ESRI’s ArcGIS 10.4.1, QGIS 2.18, and GRASS GIS 7.4.0. Only orthophotos 

and DSMs from the first study location at 61 m were used to develop model parameters for supervised image analysis, 

plant heights, and point cloud differences among LiDAR (1 m) digital elevation model (DEM) and SfM results (Figure 

6). The DSMs were resampled to represent the biomass sampling quadrat area (0.25 m2). Biomass collection points were 

associated among each orthophoto to confirm well-known MWR stands for image classification training sample 

selection. Identified MWR stands from the classification techniques were then extracted from the resampled DSM to 

provide a raster dataset representative of MWR plant height estimates derived from the sUAS (Figure 7). 

2.5 Statistical analysis and modeling.  

Regression analysis and biomass prediction algorithms utilized RStudio base, nonparametric, and ggplot2 packages 

(Hayfield and Racine 2008; Wickham 2009; R Core Team 2018). Employing ArcGIS 10.4.1 raster calculator, plant 

height raster datasets were imported into the MWR biomass regression, developed from in situ collected plant height 

estimates and biomass bundles, to acquire dry biomass estimates of the othrophoto scene. 

 

3.RESULTS AND DISCUSSION 

Due to the complexity of plant community diversity among the test sites, and thus the requirement to classify individual 

MWR plant stands, only the 61 m flight altitude results for this study are presented to provide a proof-of-concept.  

Imaging parameters: image capture: 61 AGL; fight time: 10 minutes; area coverage: 13.61 ha; camera N = 157 images.   

3.1 Study site characteristics. 
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While MWR was the only species of interest in this study, two other similarly structured species were present in the 

image scenes, which included raupō (Cattail; Typha spp.) and harakeke (New Zealand flax; Phormium tenax). Each 

alike species (in terms of aerial discrimination) was heterogeneously distributed among the imaged portions of the 

landscape. This plant distribution pattern did not impede image correlation with MWR, as biomass samples collected in 

situ were selected among sites comprising < 5% non-MWR species so not to skew the biomass prediction equation 

during analyses. 

3.2 Plant height and biomass estimations. 

Although our plant presence classification methods likely overestimated the presence of MWR, note that identified 

MWR regions were co-referenced with flight logs procured during the previous year’s helicopter application treatment. 

This allowed for a direct correlation between computer based image classifications of MWR and known MWR 

populations among the target sites identified by the aerial applicators.  

Quadrat collection sites throughout the defined experimental area represented a wide range of plant heights, biomass, and 

MWR stand densities to account for growth variability (density height means = 143-276 cm; density weight means = 

210-1812 g dm). Biomass collections varied less among Density level 1, than Density levels 2 or 3. Mean plant height to 

dry-mass ratios notably differed among each sampling density (Density 1: 2.26; Density 2: 6.96; Density 3: 5.34), 

suggesting that plant height per unit area is an important factor to consider when describing expanses of low growth 

plant stands.  

Comparing the in situ acquired plant heights and biomass provided a regression equation used for importing the MWR 

classified sUAS imagery (Figure 8). Biomass estimates showed strong agreement with MWR plant height and density 

estimates collected in-field (r2
adj = 0.61). While variation among plant density levels are presented, our trends suggest a 

pattern of linearity, with the greatest deviance produced among plant stands 1.5-2.5 m tall. Employing the in situ trained 

regression equation with raster algebra and classification statistics, we estimate the MWR plant stands represented in 

location 1 (13.61 ha) at 985.79 kg dry mass (Figure 9). Though we recognize this estimate is likely location specific, and 

possibly altitude dependent if image classification is required, future-imaging missions over this location may desire to 

use or estimate as a baseline measurement to compare future estimates. 

3.3 Survey methods and equipment. 

The Phantom 4 Advanced sUAS operated completely autonomously using a mission developed through PiX4D Mapper 

mobile application, which allowed for image capture repeatability and transfer of missions over time. Not only does this 

procedure reduce spatial coverage errors for future comparisons, but allows those unfamiliar with the equipment or study 

site to collect data without recreating the original flight plan. We also found no issue with camera image alignment 

amongst any of the imaging missions above 30 m (only 1 image went unaligned at the lowest altitude tested) during 

processing using this methodology.  

We found using GCPs was critical when developing plant height estimates and fixing relative location errors. While the 

GCPs used in this study provided a quick solution for not having fixed GCPs in the landscape, we suggest future 

applications among semi-aquatic environments use static georeferenced GCPs if forthcoming flights are scheduled (eg. 

6-8 GCPs per imaged site, with each GCP represented by a permanent pole with a distinguishable terminal target). One 

issue, which can arise using balloon GCPs, is if wind gusts are present the chance of the balloons deflating increases. 

Furthermore, while relative accuracy is increased using inflatable GCPs, the spatial precision can decrease due to windy 

conditions. We also make awareness that a precision GPS with fine resolution (5-10 cm vertical accuracy) should be 

implemented when placing GCPs. Nevertheless, our results show that relative accuracies can achieve biomass 

estimations of exotic macrophytes.  

3.4 Future biomass estimation research. 

Among future studies, metrics of interest might include how patchy distributions of MWR in an orthomosaic scene 

accounts for biomass prediction success. For example, how does biomass calculation under scenarios of high plant 

diversity compare with monoculture stands? Likewise, what effect does plant morphology and phenology have on 
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detection ability among sites with similarly structured species? Based on our findings, there remains a further need to 

determine how plant stand densities (number of plants per unit area and true spatial surface area) affects aerially derived 

biomass estimations. 

Some example equipment and methods requiring further testing to overcome some of the known limitations include: 

 Survey grade GPS equipment 

 Fixed Ground Control Points 

 sUAS with RTK/PPK capabilities 

 

4.CONCLUSION 

Mapping is crucial for risk assessment of plant invaders, quantifying ecosystem changes, and providing sound tactics for 

water resource conservation, management, and stewardship. This study defines additional toolsets and protocols, using 

photogrammetric and GIS strategies, to meet mapping demands. With the rapid development of off-the-shelf sUAS 

platforms, the potential exists to incorporate unmanned technologies into monitoring and mapping strategies for MWR 

control efforts. These tools may additionally be incorporated with traditional methods, such as ‘search and locate’ 

surveys, so that managers have the benefits of each technique. Implementing autonomous sUAS could provide an 

additional cost-effective and consumer available toolset which is scalable and provides a reproducible method for MWR 

monitoring and management.  Based on results, we suggest that our sUAS equipment and image capture strategies 

defined in this study are capable of providing greater than proof-of-concept evidence for MWR aerial biomass 

estimation. Not only does an aerial biomass assessment provide greater objectivity by the surveyor than manual binary 

estimates (eg. presence/absence from ground or helicopter GPS tagging) but also allows for repeatable survey 

applications. This low-cost system is capable of providing parallel among many emergent aquatic species, systems, and 

environments. Likewise, this innovative research will prove useful in the invasive plant management industry as remote 

image collection and photogrammetric advancements progress. The data and information collected from sUAS surveys 

will contribute to the successful management, sustainability, and stewardship of agricultural and environmental resource 

systems in the future (Adam et al. 2010; Baluja et al. 2012; Vega et al. 2015). Estimating standing biomass of an exotic 

macrophyte species like MWR is crucial in monitoring successional growth and eradication program efforts. Findings 

from this study may be used for stakeholder reporting and management prescriptions.   

  

5.MANAGEMENT IMPLICATIONS 

Annually, the New Zealand biosecurity force and third-party researchers, conduct widespread surveillance to determine 

new infestations and prevalence of MWR plant stands. Traditional methods of this operation include manned helicopters 

and wading surveys using legacy or predicted infestation areas. This system requires a well-skilled workforce of many 

experienced professionals with extensive knowledge in piloting safety, significant familiarity with localized plant 

population dynamics, equipment upkeep, and is often difficult to repeat consistently on a multi-year program. The cost 

efficiency of this current regime could be increased if there were reductions to labor, time, and safety concern confronted 

with these surveys.  Unmanned aerial technologies require minimal training, remove most human safety concerns, and 

provide deliverables, which may be viewed by any stakeholder within minutes to hours.   

Estimates of MWR coverage, distribution, and biomass have been collected over the last decade in many areas within the 

North Island, NZ regions. These estimates have traditional been used to assess the vigor and impact MWR has had on a 

particular region for the fiscal or calendar year. Annually, active management has occurred following these plant survey 

assessments, which has included physical plant removal alongside herbicide treatment programs. Monitoring and 

assessing the temporal success or trends that follow these management regimes has become a costly and time intensive 

investment.   
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Outcomes from this study may also be suited to correlate legacy-data biomass estimates held by stakeholders. Imagery 

may be further subjected to a variety of other post-processing models to identify and quantify pre- and post-herbicide 

treatment effects using machine-learning, image classification (eg. Canopeo mobile application), and geostatistical 

techniques. Waterway documentation and image capture intervals of vegetative growth could occur prior, during, and at 

set intervals after herbicide treatment (e.g. 2, 4, and 8 WAT) to provide a timeline of spectral or growth form response of 

MWR. For example, temporal and spatial persistence of MWR after treatment could follow visual ratings of percent 

control (efficacy appraisals of chlorosis and necrosis) from 0% (no injury) to 100% (complete desiccation) and 

automated imaging appraisals. Parallel treatment assessments of helicopter locations (monitored with GPS) versus 

backpack applications may follow an identical imagery protocol for comparison. 
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Figure 1. Manchurian Wild Rice growth habit and invaded habitat examples. (A. Typical MWR growth structure with coarse leaves 

ranging 1-4 m in height/length.; B. Encroachment of drainage canal by invading MWR.; C. Waterlogged pastureland with clumps of 

MWR spread throughout causing flooding issues). Often, livestock production is reduced due to the invasion of MWR into 

pastureland and can cause significant drainage issues in water catchment zones.  
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Figure 2. Representation of the study location 1 in Wellington, New Zealand with the first flight plan shown in the provided 

orthophoto (13.61 ha). The Wellington Region is located at the southernmost portion of New Zealand’s North Island. This area is 

highly biologically productive and is currently impacted by several invasive macrophyte species. However, the area is also supporting 

populations of nationally threatened aquatic plants, local economies from agricultural operations, and native flora and fauna habitat 

that is often threatened due to dense stands of exotic vegetation. One of the most ecologically and economically detrimental weed 

species known to this area is MWR. Aerial control regimes are shown overlain in green on the othrophoto.  
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Figure 3. Maps showing an orthomosaic with respective GCP (A) and biomass harvest locations (B). Notably, the accuracy of the 

handheld GPS used for GCP reference was not ideal for use. However, the GCPs still provide a consistent baseline relative x,y,z-value 

among all altitudes flown.  
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Figure 4. Example of balloon used as a GCP. One of the confines with obtaining accurate and repeatable survey options among 

aquatic areas is the need for GCPs. Pink party balloons were used to meet the constraints of using GCPs in an aquatic environment. 

One downside to this method was the time it took to place each balloon, measure the GPS location, and fly the sUAS without the 

balloon popping. If this area were in need of continued monitoring, then placing a series of permanent poles having visible markings 

from a nadir perspective would be beneficial. This way, assessment time in the field would only be as long as the flight plan, and 

permanent GCPs allow for a consistent baseline for temporal comparisons.  
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Figure 5. Dense point cloud views in Agisoft PhotoScan of know MWR locations in the map (A. map overview; B. zoomed extent of 

overview; C. horizontal view of MWR stand with vertical measurement). Height measurements as shown may be validated against 

DSMs and helicopter treatment path within the map location.  
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Figure 6. An example of the digital elevation and surface models of the first flight area with an altitude of 120 m. Maps show: A. 

DEM 1 m Lidar data obtained through Land Information New Zealand (https://www.linz.govt.nz/data/linz-data/elevation-data); B. 12 

cm pre-processed DSM done in Agisoft Photoscan; C. Difference model created in GRASS GIS of A and B. Uncorrected elevation 

data for each map was A: (2.40 – 21.75 m ASL); B: (2.36 – 20.7 m ASL); and C: (0.75 – 14.5 m).  
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Figure 7. Supervised image classification mapping of MWR from the first study site at 61 m flying altitude. A). Orthophoto generated 

from this sUAS flight shows MWR classified as red. While the training data needs some manipulation, the classification represents 

known areas of MWR well. Classification used the biomass collection locations and previous helicopter application logs as an 

observational test of MWR representation. Supervised classifications of MWR at varying altitudes is being explored. B). The 

reclassified DSM pixels represent the spatial coverage of each sampling density quadrat. C). Raster image representing MWR plant 

height values created by extracting the classified MWR orthophoto from the reclassified DSM. 
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Figure 8. Regression model developed using in situ collected biomass and plant height estimates from each density 0.25 m2 quadrat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Manchurian Wild Rice Biomass 

Biomass(y) = -1058.43 + 10.47 (Height), N=9;  

R
2

adj 
: 0.61 
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Figure 9. Map deliverable of MWR plant stands represented in location 1 (13.61 ha) estimated at 985.79 kg dry mass from aerially 

derived plant height estimates and the regression model. Plant stands are shown in the blue-green raster gradient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimated MWR dm : 985.79 kg  
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Table 1. GCP balloon locations among both study sites. 

GCP Identifier Latitude Longitude Altitude (m) 

MWR1 40.850757 175.049869 6.63 

MWR2 

 

40.851436 175.048517 6.41 

MWR3 

 

40.851974 175.049019 6.79 

MWR4 

 

40.851887 175.047712 5.50 

MWR5 

 

40.852345 175.047744 7.23 

MWN6 

 

40.852031 175.04782 8.43 

MWR7 

 

40.851189 175.048456 5.98 

MWR8 

 

40.851618 175.046948 4.68 

MWR9 

 

40.851054 175.046132 3.49 

MWR10 

 

40.851288 175.045775 3.64 

MWR11 

 

40.851414 175.046668 2.50 

MWR12 

 

40.851728 175.046696 2.69 
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Table 2. Destructive biomass harvest of MWR in first study site.  

Biomass Identifier Density Level Latitude Longitude 

01A 

[0-1 m] 

40.850935 175.04977 

02A 

 

40.851143 175.049544 

03A 

 

40.851156 175.049521 

11B 

[1-2 m] 

 

40.850635 175.05058 

12B 

 

40.850606 175.050414 

13B 

 

40.850683 175.050261 

21C 

[>2 m] 

 

40.852317 175.048487 

22C 

 

40.852389 175.048543 

23C 

 

40.852268 175.048321 
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